1 PURPOSE

This document provides guidance to agents in respect of internal model validation requirements under Solvency II. It builds on the findings and observations of the Model Validation workstream of the Lloyd’s Solvency II Dry Run. It does not set minimum standards for validation of syndicate internal models.

A draft version of this guidance was issued to all agents on 1 June inviting feedback and comments which have been incorporated where possible. A separate summary of all feedback received together with Lloyd’s response has been provided to agents.

Agents should note that all guidance issued is subject to ongoing discussion and change as the European Commission (EC), European Insurance and Occupational Pensions Authority (EIOPA) and FSA requirements become clearer.
2 SCOPE

This document covers validation of the methods, assumptions and expert judgement used in the internal model.

Items out of scope include:

- Data (see section 4.1 for a description of how Lloyd’s will provide guidance on data validation)
- Catastrophe risk (see section 4.2.3 for a description of how Lloyd’s will provide guidance on catastrophe risk validation)
- Validation Policy (see section 10 of the Model Validation Evidence Template for a description of the requirements)
- Validation Report (see the Validation Report Guidance and Model Validation Report Illustration for Reserving Risk on lloyds.com)
- Documentation
- Systems and IT
- Use test
3 COMPONENTS OF VALIDATION

3.1 Introduction

It is essential for the Managing Agent, for Lloyd's and for compliance with Solvency II that syndicate internal models are thoroughly validated. The requirements for model validation under Solvency II are extensive, and meeting them will bring many challenges for the industry. This is especially true for Lloyd's, due to the unique and complex nature of the risks written in the market. Managing agents have invested significant time and effort over the last two years in order to meet the standards of Solvency II, including those for validation; progress has been promising.

The overall purpose of the validation exercise is to ensure that the internal model provides a realistic and robust assessment of all the material risks faced by the syndicate. Validation is an iterative process of identification of model limitations and implementation of improvements. The most appropriate validation tools for achieving this task will vary by syndicate, depending on the size and complexity of its risks. This guidance is intended to assist agents with the selection and application of the validation tools most suited to their syndicates' risk profiles.

The validation exercise consists of many components, which are covered in more detail in the following sections. It requires independence in order to ensure objective challenge. It must include a process to ensure that all material risks are covered in the model, and it should produce a risk ranking and a demonstration that the validation effort has been proportional to the materiality of the risk. The validation tools and tests should be well defined and appropriate for the risks being validated. Their outcomes should be clearly explained and justified, and the path from a "fail" outcome to escalation and model change should be clearly mapped. Finally, Solvency II is an evidentiary regime requiring documentation of the validation process and the reasons for the steps taken.

One finding from the Dry Run was that significant improvements to validation could be made by bringing greater clarity and integration to existing processes, as opposed to adding new ones. Examples of how this could be achieved include clearer links with the Validation Policy, more explicit risk ranking, better explanations of test outcomes, and more references to syndicate experience.

3.2 Independence

Validation requires objective challenge. Agents should be able to demonstrate that individuals responsible for validation have sufficient independence from the design, build, parameterisation and implementation of the model component being validated. See the Validation Report Guidance for details around the independence requirements for the author of the Validation Report.

3.3 Risk coverage and risk indicators

The objective of the validation process is to test that all material risks to the syndicate are adequately assessed in the internal model. The initial steps in the validation process should therefore be a gap analysis to test whether all material risks are indeed covered. A typical and acceptable way to do this is:

(1) an identification of risks to the business;
(2) an identification of which of these risks are not covered by the internal model; and
(3) an assessment of whether the risks not covered are material.

If material risks have been excluded, the model needs to be changed to include them.
The risk identification process should identify all sources of loss to which the syndicate could have non-trivial exposure. This process should not be restricted to insurance risks; it should for example include considerations such as the terms and conditions of the cover issued, data and operational systems, the current legal environment, recent market experience, and so on. It should take into account the possibility of new sources of loss not experienced by the syndicate or market in the past.

In recent years, many agents have maintained a risk register as a way of identifying risks faced by the syndicate. Lloyd’s considers this to be an appropriate approach under Solvency II. The format of the register should be the one most suitable to agents. The risk register may also be used to identify which risks are currently “in” or “out” of the internal model.

The risks not covered by the internal model should be assessed for materiality to the syndicate. This requires:

(1) an explicit threshold for materiality; and
(2) risk indicators for determining materiality.

It is agents' responsibility to determine and describe the materiality threshold for their syndicates. The threshold should be closely linked to those for major and minor model changes; it should be less than that for a major model change.

Risk materiality can be assessed using risk indicators of materiality. These indicators can be approximate. Examples include: standard deviations; coefficients of variations ("CoVs"); allocated capital; and matrix methods for aggregation of risk. See CEIOPS DOC 48/09 (5.3.4.2) and the 4 & 5 July 2011 Model Validation Workshops for further discussion of risk coverage and risk indicators of materiality.

Historically, many of the largest losses to the market have come from sources of loss that were partially or non-modelled. Examples include asbestos and pollution, multi-year reserve deteriorations, the World Trade Center terrorist attacks, and the 2011 Thai floods and Japanese tsunami. For this reason, Lloyd’s considers a comprehensive risk identification process to be the basis for sound validation. Agents will be challenged on whether their model has captured all material risks.

Lloyd’s recommends that agents have a comprehensive process for identifying potential risks to the business and assessing their materiality. The use of the outputs of this process within the validation exercise should be described in the Validation Policy.

3.4 Risk ranking

The risk coverage exercise described above should confirm whether all material risks are covered in the model and should be proportional to their size and complexity.

The purpose of risk ranking in the context of validation is to identify those areas requiring the most extensive validation. Risk ranking should therefore be one of the first steps in the validation of the internal model.

Agents should be able to produce rankings consistent with the groupings used to manage the business (US medical malpractice, EUR-denominated corporate bonds, etc.). It is not necessary to rank every risk component of the internal model, although the methodology should have the capability to do so. The ranking methodology may be approximate, but should be broadly consistent across risk types.
There is overlap between risk ranking and the assessment of risk coverage described above. Both can be done using approximate metrics, such as risk indicators of materiality. It is preferable, however, that the risk ranking be derived from the outputs for the risk groupings used in the model.

Agents should view risk ranking as a tool for making the validation process more efficient. It will enable them to allocate resources to areas where model improvements will yield the greatest overall benefit.

Lloyd’s recommends that the Validation Policy include a description of how the outputs of the risk ranking exercise are used within the validation process.

3.5 The validation cycle

3.5.1 Overview of the validation cycle

The validation cycle is at the centre of the validation process. It is comprised of four steps:

(1) the application of the validation test or tool;
(2) the analysis of test results;
(3) the escalation of test results to appropriate individuals in the business; and
(4) the implementation of any changes necessitated by the validation test outcome.

In this section we provide an overview of the main features of each stage in the validation cycle. Guidance on the application of each stage to different risk types is provided under their respective sections (see section 4).

At a high level, the common finding from the Dry Run was that agents provided relatively clear descriptions of step (1) of the cycle, but were less effective on step (2). For step (3), a process for escalation was often described but without sufficient practical detail. Step (4), the implementation of changes, was not usually covered. Individual feedback has been provided to agents on specific points throughout the Dry Run process.

With respect to step (2), all validation tests should result in a pass or fail. In practice, however, there will often be uncertainty around whether the result should be a pass or fail. One way to approach this problem is to group test outcomes into “buckets”:

(1) a fail or rejection;
(2) acceptance with minor or no modifications;
(3) acceptance, but with recognition that there is uncertainty around the assumption and that an alternative could also have been reasonably selected.

In all cases, reasons should be given to support the test result. Given the specialised nature of the risks placed at Lloyd’s and the frequent lack of large datasets of relevant history, outcomes (1) and (2) will generally be less likely than (3).

In view of this, a reasonable approach to applying validation tests would be the following. First, apply one or more of the tests listed in section 3.5.2 other than sensitivity testing to determine which outcome “bucket” the method or assumption belongs in. Following from this, those assumptions in the third outcome bucket of acceptance, but with uncertainty, should be sensitivity tested. For the most material risks, these sensitivity tests should be based on plausible alternatives, rather than an across-the-board deterministic increase/decrease. The resulting changes in model output can provide an indication of potential limitations in the model arising from the uncertainty inherent in the assumptions.
Two common findings from the Dry Run were that
(1) agents often failed to clearly state what the test outcome was and why; and
(2) when the test outcome was stated, there was little or no assessment of potential limitations.

With respect to step (3), escalation, a key purpose of escalation should be to recruit additional validation expertise when a validation failure has occurred at a pre-defined level of materiality. The additional resource should have well-defined responsibilities, including proposing or testing alternative methods (as opposed to simply reviewing what has already been done). The materiality threshold for escalation should be sufficiently robust that it is breached on an exceptional basis. Frequent escalations may be an indication that the primary validation process or resource is too weak.

With regards to step (4), the rationale and impact for changes to the model should be well documented. The changes should be classified as major or minor as specified in the Validation Policy.

Lloyd's recommends that each validation test shows evidence of the four stages of the validation cycle. In particular, it should be clear what the test outcome is and the reasons for that outcome.

3.5.2 Validation tools

3.5.2.1 Qualitative validation of methodology and assumptions

Article 121(2) requires that agents “be able to justify the assumptions underlying their internal model”.

The justification of methods and assumptions can be done both quantitatively and qualitatively. The other tests described in this section provide quantitative validation. However, qualitative validation can also play an important role, particularly if data is limited or where assumptions cannot be tested directly, as with an external model. Qualitative validation involves the same stages of the validation cycle as quantitative validation, with the analysis of results being based primarily on expert judgement.

Qualitative validation begins with a description of the most material assumptions of the method being used; it should identify where the assumptions may not be appropriate for the risk being modelled, and assess the limitations. An example would be the derivation of the premium risk volatility assumptions for a new Employers Liability portfolio from one with an established history, but with policyholders in a different industry. The agent could identify the main source(s) of potential mismatch in assumptions, such as the number of employees or claim frequency potential, and then accept/reject/modify the assumptions.

Lloyd’s recommends that agents be able to identify the most material assumptions of their methods and assess their limitations on a qualitative basis. It is not expected that agents should prepare an exhaustive list of all the assumptions relevant in any way to every risk. Qualitative validation should be more robust in cases where data is limited or assumptions cannot be tested directly (as with external models).

3.5.2.2 Testing against experience

Testing against experience includes tests of goodness of fit (“g.o.f”) and comparisons between model outputs and historical results (“backtests”).

In general, the claims history may be too limited to provide conclusive evidence for the optimum assumption or method. An obvious example is the selection of a large claims distribution, for which there may be a number of distributions with very different skewness, but which all provide close fit to
the bulk of the claims. Despite this, the data will often be sufficient to indicate a test result in the first or third buckets (reject or accept with limitations). In the large claims example, the existence of two claims in seven years exceeding the one-in-fifty year return period for a given frequency-severity model could be grounds for rejecting the model.

Agents sometimes took the approach in the Dry Run of testing against a single historical value. An example would be comparing the most recent year’s loss ratio against the model distribution, with a fail occurring if the loss ratio was above/below the 99th/1st percentile. Such an approach may provide good grounds for rejecting a distribution, provided that the percentiles for a fail are appropriately high/low. The drawback is that it provides no information on the appropriateness of the shape of the distribution in the event of a pass. A test based on all relevant experience would be more informative.

In many instances, the portfolio will have changed over time. In these cases, there may be good reasons for excluding some parts of the history from the tests against experience. However, such exclusions should be based on objective reasons relating to unique characteristics of the risks, not simply on underwriting results. Conversely, it should also be recognised that a limited history may not capture the full tail risk of any portfolio; there may therefore be reasons based on expert judgement for model risk exceeding that indicated by the data. Lloyd’s will not accept agents taking a one-sided approach of excluding unfavourable history as being irrelevant, while not making allowance for tail risk that may not be reflected in the experience.

Finally, tests against experience can assist in communication of model outputs to management by linking them with recent results.

Lloyd’s recommends that comparisons to past experience are made wherever it is available. These comparisons should include clear explanations, based on expert judgement, of the relevance of this experience to the current risks.

3.5.2.3 Stress and scenario testing

Stress and scenario tests are a very valuable tool for validation of syndicate internal models. They rely heavily on expert judgement and are particularly useful where data is limited, such as in the tail of the distribution. They have the additional advantage of being readily understood by individuals across the business. Furthermore, despite often being viewed as relatively less sophisticated, the outcomes of these tests can be viewed as coherent risk measures. [5]

Stress and scenario tests must be based on realistic assumptions and extreme events in order to be credible. A common finding from the Dry Run was that agents did not provide an explanation or narrative around their stress tests; this often diminished the value of the exercise. In other cases, the “stresses” were not sufficiently severe.

The event severities and probabilities should be derived independently from the process used to derive the risk distributions in the model. In general, it will be more difficult to assess the probabilities than the severities. It may helpful in this regard to also consider scenarios at lower return periods, such as 20 to 50 years (twice or once in a career) and then extrapolate or build up to higher return period type events.

The evaluation of stress and scenario tests as validation tools requires the comparison of return periods from the tests with those from the model. As with other validation tests, agents should clearly state in which of the three test outcome buckets the test result lies. For example, if a scenario test indicates that there is a 1-in-40 year return period for the outcome of a reserve deterioration
exceeding £35m and a cat loss exceeding £10m, while the model indicates that this would be a 1-in-100 year outcome, it should be clear why this result is a pass/fail/accept with limitations.

3.5.2.4 Sensitivity testing

Sensitivity testing has broad application throughout the model. In general, there are two types of sensitivity testing. The first involves determining the sensitivity of model outputs to variations in key inputs or assumptions; the second involves testing the stability of outputs using fixed inputs while varying the random seed or number of simulations. We will refer to the first type as sensitivity testing and the second as stability testing.

There are two approaches to sensitivity testing. One type (“ST-1”) involves deterministically varying a set of assumptions (such as loss ratio CoVs) by a given percentage and measuring the effect on model outputs. This approach can be used to identify the relative materiality of different inputs; it can also test the mechanics of the model, in that if outputs do not move in the expected direction, it could be the result of a coding error, broken link, etc.

The second application (“ST-2”) involves varying the inputs, but using plausible alternative selections. The choice of plausible alternatives may be guided by a prior validation test, such as a test against experience. ST-2 will be less useful in determining the relative materiality of inputs, since the increase/decrease will vary for different inputs. However, ST-2 has the advantage of reflecting the uncertainty in different assumptions, and therefore in model outputs. As such, the results will be more informative to management. This approach also tests the mechanics of the model.

Lloyd’s prefers that both approaches are used. ST-1 has more relevance to risk ranking, whereas ST-2 is more useful for conveying the uncertainty in the internal model. ST-2 requires the additional effort of determining plausible alternatives, so it is more appropriate for larger risks. It should be noted that neither approach provides validation of the absolute value of the input being tested. For this reason, sensitivity testing on its own will generally not be sufficient for validation. As stated in CEIOPS DOC 48/09 (8.75), sensitivity testing will be difficult to isolate from other forms of validation, such as statistical quality testing and backtesting.

A finding from the Dry Run was that agents relied almost exclusively on the first form of sensitivity testing. Furthermore, agents mostly restricted themselves to sensitivity testing parameters as opposed to distributions or other assumptions. This approach may have neglected key drivers of model outputs. For example, varying the input correlations for a Gaussian copula does not sensitivity test for the impact of alternative dependency structures. Another finding was that agents often defined a test as a “pass” if it resulted in a change to the SCR that was negligible or within a pre-defined range. The disadvantage of these criteria is that the degree of sensitivity to an assumption does not determine its appropriateness. A sensitivity test on a material assumption will produce a large change in model outputs, regardless of whether it is correct. Conversely, a low sensitivity could be an indication that the risk has not been adequately accounted for. In addition, as a general rule, it will be difficult to produce a robust range of reasonableness for SCR sensitivities independently of the model. Agents may misinterpret useful indications on the drivers of the business as a validation “failure”.

With regards to stability testing, the principal challenges are:

(1) the time and effort associated with re-running the model, and
(2) defining appropriate criteria.
With regards to (1), it may be possible to obtain an (approximate) indication of the minimum number of simulations required for convergence by running separate simulations for the longest tailed risk in the model. For example, if US quake is the syndicate’s longest tailed risk and the internal model input is a RiskLink ELT, the agent could separately simulate from the ELT to test the number of simulations required to obtain a satisfactory level of convergence. Another approach is to analytically determine standard deviations, key percentiles, OEPs etc. from the input distributions and compare them to those obtained from the internal model. Yet another approach would be to run the internal model on a number of seeds (say five – ten) and take the mean of the result.

It is currently the responsibility of agents to determine appropriate stability criteria; Lloyd’s may however provide explicit criteria at a later date. Agents should include the risk from model instability in their risk ranking. This risk should be less than that from premium or reserving risk on any significant class of business. It should be below the threshold for a major model change.

A finding from the Dry Run was that many agents are running models on 50,000 simulations or less. In many cases, this will be insufficient to reduce model instability to an acceptable level. Agents should expect challenges from Lloyd’s on their validation of model stability.

Lloyd’s recommends that agents undertake sensitivity testing to assess the materiality of key assumptions in the model; for more material assumptions and inputs, these sensitivity tests should also reflect reasonable alternatives. It is also expected that agents provide criteria for model stability and evidence that these criteria have been satisfied.

3.5.2.5 Reverse stress testing

Reverse stress testing is an essential validation test of the syndicate SCR. Management should have a view on the risks to solvency as well as the opportunities for growth and profit. Reverse stress testing provides the best opportunity to evidence that understanding.

Reverse stress testing begins with consideration of the events or combinations of the events that would threaten the viability of the business. They should reflect the interaction of management (in) actions and external events. Historically, breaches of the ICA have resulted from items such as:

- Reserve deteriorations on multiple years of account of a casualty portfolio; or
- Large natural catastrophes, with a significant proportion of losses coming from perils not fully covered in the vendor models.

Lloyd’s will take a particular interest in how agents have considered either or both of the above (as appropriate) in their reverse stress testing. Agents should not, however, confine their reverse stress testing to these scenarios.

Reverse stresses that result in a depletion of capital are by definition at return periods of 1-in-200 years or higher. These return periods are for the estimated capital requirement; that is, they are at the syndicate level. The stresses must therefore reflect the aggregation of risks across the syndicate, and not only the drivers of the insolvency. For example, a reverse stress could be based on the joint occurrence of a US windstorm and reserve deterioration on a casualty class, neither of which on its own would be sufficient to trigger an insolvency.

The reverse stress test outcome should be based on a comparison between the capital requirement distribution and the reverse stresses. The distribution in the neighbourhood of the 99.5th percentile should include aggregations of outcomes that are consistent with the reverse stresses. In this sense, the reverse stress tests can be thought of as a “reality check” on the capital requirement distribution.
3.5.2.6 P&L attribution

Article 123 requires that undertakings review the causes and sources of profits and losses for each major business unit on at least an annual basis. It also requires undertakings to demonstrate how the categorisation of risk chosen in the internal model explains the causes and sources of profits and losses. Two possible applications of P&L attribution and their limitations are summarised below.

<table>
<thead>
<tr>
<th>APPLICATION OR TEST</th>
<th>LIMITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test whether all relevant risk factors and their</td>
<td>Requires observable market prices;</td>
</tr>
<tr>
<td>dependencies have been identified</td>
<td>not viable for technical liabilities</td>
</tr>
<tr>
<td>Compare actual P&L with that generated by the internal</td>
<td>Limited number of observations for insurance undertakings</td>
</tr>
<tr>
<td>model (backtesting)</td>
<td></td>
</tr>
</tbody>
</table>

Lloyd’s recognises that P&L attribution is a new form of validation for the majority of the market; furthermore, the limitations listed above are significant. Nonetheless, P&L attribution is a Directive requirement, and agents will therefore be required to undertake it in an appropriate manner.

The first application shown in the table relates to appropriate risk categorisation of P&L sources in the model. One approach to this application could be based on the following components.

- A summary of the profit/loss on a GAAP basis for each of the syndicate’s major profit centres over the last five or so years
- An identification and description of the two or three largest contributors to profit/loss for each centre
- A mapping of each driver to the risk category(ies) in the internal model
- An evaluation of whether the risk categories in the model appropriately capture the drivers
- A description of any actions taken as a result of each test outcome

The profit centre definitions should be the agent’s own. (The definition may have changed over time.) The identification of the main contributors to the P&L should be as granular as possible; otherwise the test will almost always show that the driver has been captured in the model’s risk categories.

Lloyd’s would expect a “fail” if the profit/loss driver is not captured in the model (for example, tsunami losses), or a “pass” if the source is explicitly captured (for example, if IBNER releases on large motor claims are explicitly modelled). A “pass but with limitations” could arise if the variability of the driver has been captured by an approximate method (for example, reinsurance recoveries on prior years modelled as a fixed percentage of gross).

The above exercise could be done in table form, with approximately one page for each prior year. As its primary audience would be senior management, it should include actual P&L results and be free of actuarial terminology. The 9 & 10 May 2011 Model Validation Workshop slides contain a more detailed example of this type of P&L attribution. The second application involves testing against experience. Lloyd’s expects that, in practice, this application will be a relatively limited extension of the analysis described above, involving comparison of specific historical values from the P&L (e.g. underwriting profit by class of business) to the distributions of the same risks produced by the internal model.
Given that Solvency II requires internal models to be constructed on an economic basis, P&L attribution should strictly speaking be done on an economic basis. Lloyd’s is aware that this will not be practicable for most agents at present. Agents should however make pragmatic use of available accounting information, with some qualitative consideration of how results of the test might differ on an economic basis.

Lloyd’s recommends that agents produce at least one example of P&L attribution, using a risk categorisation approach or a test against experience. Agents should use their own definition of “profit centre”; Lloyd’s recommends that these be at a more granular level for underwriting sources of P&L.

3.5.2.7 Other tests

There are a number of other validation tests in addition to the above that may be appropriate.

Benchmarking can be both internal and external. An example of internal benchmarking would be comparison of a loss ratio distribution for a new or small class against those of more established classes. Conclusions could be made based on known differences between the classes, such as the length of payment patterns, size differences, market cycle, and so on.

External benchmarking may involve using market data to derive an alternative result. It may also include comparisons to market peer groups made by consultants or other third parties. Whilst such external benchmarking may add value, it should not form the basis of the validation process. Validation should demonstrate that the internal model is appropriate for the syndicate’s own risks; external benchmarking cannot perform this task. When using benchmarks based on a peer group, agents should obtain specifics on the relevance of the peer group to their own business.

Analysis of change involves comparing the values of key inputs and outputs with those of the previous version of the model. Many agents made such comparisons with the ICA. The analysis should include an investigation of why the values have or have not changed, and reasons as to why the changes are or are not appropriate. The benefit of this exercise will depend on how well the previous version of the model was validated.

Tests of model functioning are designed to ensure that the model is functioning as intended. Examples include comparisons between the means and standard deviations of the input and output distributions and “as-if” calculations that push a single value of, for example, a cat event through the model and compare gross and net outcomes with those calculated manually. Tests of model functioning would normally be done most intensively during the model build stage.

3.5.3 Analysis of results

As noted in section 3.5.1, it should be possible to assign a test result to one of three outcome “buckets”:

(1) fail;
(2) acceptance with no or minor modifications;
(3) acceptance, but with the recognition that there is uncertainty around the result, and that alternative assumptions could also yield an acceptable result.

Results in (3) are expected to be the most common, given the nature of the business written at Lloyd’s.

The analysis of results should make clear which of the above categories the test outcome falls into. This does not require agents to follow the three categories above for their validation outcomes; for
example, they may classify outcomes as a pass/fail, and explain any qualifications behind either result.

The identification of test results as pass or fail does not necessarily require the pre-specification of precise criteria. In many cases it will not be possible or desirable to do so. However, it does require justification of the conclusion. It also requires clarification of what an unacceptable result would look like. The FSA has stated that they consider it to be poor practice when persons responsible for validation are “unable to specify what an unreasonable output would be.” [2]

One finding from the Dry Run was that agents often applied a test without stating whether it was a pass or fail and why. This sometimes occurred with goodness of fit tests, where plots were presented, showing varying degrees of fit, without any supporting explanation. In other cases, usually with sensitivity tests, explicit criteria were specified in advance, without any justification of the criteria. (As discussed in section 3.5.2.4, pass/fail criteria for sensitivity tests may be inappropriate.)

In cases where more than one validation test has been applied, there should be an overall conclusion based on assessment of the individual test results. This conclusion should be supported by explanations of the weight given to the different tests.

The Validation Policy should define the next step in the validation cycle, depending on the outcome of the analysis of results. In cases where the outcome is “pass, but with limitations”, it is reasonable that for more material risks there should be some sensitivity testing of alternatives. Similarly, a “fail” for a material risk should lead to escalation, which is discussed below. For a more practical example of these alternatives, see the Reserving Risk Illustration for the Validation Report under the Model Validation workstream section for Solvency II on lloyds.com.

3.5.4 Escalation

Escalation was discussed briefly in section 3.5.1. Elements of a robust escalation process include:

- A well-defined trigger in terms of validation test outcomes and risk materiality
- A description of the person(s) responsible and the tools they are expected to use
- A clear expectation of what is required for resolution of the validation escalation

Escalation should not be treated as a form of peer review. It will add more value if it involves the use of additional validation tools or evaluation of alternatives by an individual independent from the primary process. Since this approach requires additional resource, the materiality bar should be set appropriately high. Clearly some agents will not have such additional resource; however, they should still clarify what escalation means in terms of the validation tools used and how resolution is obtained.

A finding from the Dry Run was that agents often specified the escalation path and persons involved, without describing what these individuals would do should an escalation occur. In these cases, it was difficult to be sure how escalation would enhance the validation process, even if the persons involved were very experienced.

3.5.5 Changes to the internal model

It is to be expected that changes to the model will be necessary over time, as additional experience becomes available, new lines of business are added, as a result of the escalation process, and so on. The main requirements around this stage of the validation cycle are that:

- They have a clear basis in the preceding stages of validation
• The potential impact of the change on other areas of the model is understood (for example, in terms of dependencies with other risks or model run time)

• The overall impact of the change is assessed

• There is a process for documenting and communicating the changes

The third step should include an analysis of change with the previous version of the model and a classification of the change as minor or major. Lloyd’s must be notified of minor and major changes; major changes must be approved. The format for which the changes must be reported will be specified at a later date.

The definition of major and minor changes should be set out in the Validation Policy, Change Policy, or other policy document.

It is to be expected that instances will arise when changes to the model are required, but which cannot be implemented prior to submitting the Lloyd’s capital return, due to time constraints. In these cases, agents should estimate the materiality of the required change, and inform Lloyd’s.
4 VALIDATION BY RISK TYPE

Section 3 provided general guidance on the main components of validation. This section provides guidance on the application of the validation cycle to individual risk types. The emphasis is on the validation issues identified in the Dry Run.

4.1 Data

Data is out of scope for this guidance document. Guidance has previously been issued to the market through the Data workshops of July 2011 and April 2012. Data Audit Report guidance was issued 31 March 2012 and all material is available on lloyds.com.

Further guidance and feedback will occur in 2012 as part of the Lloyd's review process.

4.2 Insurance risk

4.2.1 Reserving risk

Reserving risk is the largest risk for most syndicates and for the market as a whole. It should therefore be one of the main areas of focus for validation.

One of the most significant validation issues identified in the Dry Run relates to dependencies between accident years/years of account and the resulting skewness of the overall reserve risk distribution for a given class of business. (See section 4.6 for a discussion of other types of dependencies.) The majority of the market has relied in part or in total on triangle based methods for determining reserve risk – the Mack method and (more commonly) the bootstrap. Agents often stated that the bootstrap implicitly accounts for dependencies between accident years. It is true that the bootstrap is based on a sampling of the same set of residuals across accident years, and that this will introduce correlations between accident years. Similarly, in the Mack method, correlations are introduced through use of common development factors across accident years; this is explicitly allowed for in the formula for all years [3]. This correlation is however distinct from dependency between accident years' process risk. In the bootstrap, the process risk distributions for individual accident year/development year cells are sampled from independently, consistent with the assumptions of the GLM on which the approach is based [1]. In the Mack method, independence is explicitly assumed. It is the process risk that is of interest in modelling reserve deteriorations; furthermore, as noted earlier, deteriorations across multiple accident years have been the most frequent cause of ICA breaches within the market. Therefore, the assumption of independence between accident periods needs to be carefully addressed within the validation.

CEIOPS DOC 48/09 (5.245) describes two approaches to the validation of dependencies:

1) causal explanations based on expert judgement, and
2) quantitative methods.

In terms of causal explanations, a number of considerations suggest that there will often be dependencies between accident years, particularly for long tailed classes of business. These include similar (or the same) risks, the underwriting cycle, claims inflation, and so on. Agents have however often included inter-class dependencies for which there is limited causal justification, but neglected intra-class dependencies between accident years.

In terms of quantitative tools, goodness-of-fit tests with residuals can provide evidence of calendar year trends that may invalidate the assumption of accident year independence. In the Dry Run, some...
agents stated that they “looked at the residuals”, but were unable to say how they would differentiate between outliers, which can be excluded vs. trends, which suggest a mismatch between the data and the model assumptions. Others expressed the view that trends or outliers in the residuals resulted in a more prudent estimate of reserve risk. The alternative view is that they signify a poorly fitting model whose limitations should be assessed.

If the analysis of validation results indicates that the assumption of independence between accident years has not been satisfied, there will not be a simple “one size fits all” solution. Whilst there are numerous alternatives to the bootstrap and Mack in the actuarial literature, few of these involve quantification of calendar year trends. Those that do will still require the modeller to take a view on whether/how the calendar year trend will continue. In some cases, adjustments to the data (for example capping claims) may yield a better agreement with the bootstrap assumptions. In general, Lloyd’s would encourage agents to make greater use of the detailed analysis done in the best estimate reserving process as opposed to relying on more sophisticated (but also more black box) statistical models. The reserving process will provide insights on the causes of past concurrent accident year deteriorations, and this could aid in, for example, the development of stress and scenario tests.

The methodology for determining reinsurance recoveries should be validated. Agents frequently use net-to-gross ratios (fixed or variable), which may not be accurate at high percentiles of gross claims. The materiality of any approximations should be assessed.

This section has covered only two of the more prominent reserving risk validation issues identified in the Dry Run. Other areas, such as latent claims, IBNER, legal rulings, and so on, will also need to be considered. Agents seeking further background may wish to refer to the topics listed in the ICA Guidance.

See Appendix 1 for examples of validation tests for reserving risk.

4.2.2 Premium risk excluding catastrophe

The following discusses some of the more frequently raised validation issues for premium ex cat. In contrast to reserving risk, Lloyd’s did not identify one or two validation concerns of high materiality for the majority of the market.

One validation issue (which has overlap with catastrophe risk) relates to the assumption that non-modelled cat perils are covered in the attritional claims distributions. A common approach is to use the attritional loss ratio as a balancing item to ensure that the attritional, large and cat mean loss ratios sum to the business plan loss ratio, which in turn is meant to include allowance for non-modelled perils. This approach has a number of drawbacks, in particular that it is validated at the mean only. Agents using this approach should validate the entire attritional distribution, bearing in mind that losses from non-modelled natural catastrophe perils may be highly skewed.

A second issue relates to the threshold for large losses. Agents often stated that this was done based on internal reporting considerations (and therefore supported the Use test). While this is a valid rationale, the implications should be assessed from a statistical standpoint. The threshold will affect the credibility of the data for making frequency and severity distribution selections.

In some instances, agents relied on prior loss experience unadjusted for inflation, IBNER or other changes as the basis for their premium risk distributions. In other cases adjustments were made, but the basis for the adjustments was not validated. An example is the revaluation of large claims to bring them to the current cost level. In some cases the revaluation rate was selected judgementally and not
supported by expert judgement or quantitative tests. (See Appendix 1 for an example of the latter.)
For short tailed classes, the selected revaluation rate may not be a material assumption, whereas for
some long-tailed classes it could be very material. If the revaluation assumption is material, it should
be validated.

A fourth issue relates to the reliance on underwriter judgement for parameter selection or validation.
While many underwriters will have valuable insights gained from years of experience, their views
should be supported by specific reasons. Another finding was that the validation questions posed to
underwriters were sometimes open to more than one interpretation. An example was a request for an
underwriter’s view on large claim “return periods”, when in fact the question related to the large claims
severity distribution.

The use of an alternative model may be a useful validation tool for some classes. An example is a
property class for which the risk profile has changed significantly, or where the sums insured of the
historical claims are not known. In these cases an exposure based frequency-severity model could
provide a valuable alternative indication to an experience based model.

Agents should also ensure that there is consistency between reserve risk and premium risk. It will
generally be expected that the volatility for a given year of account should decrease with time.

See Appendix 1 for examples of validation tests for premium risk.

4.2.3 Catastrophe risk

Detailed guidance on catastrophe risk is out of scope for this guidance document. The following
provides information on guidance that will be issued in 2012.

Claims and sources of loss related to catastrophe perils can be grouped into those modelled using
external catastrophe models, and those modelled using other methodologies.

External catastrophe models

The Lloyd’s and LMA Validation Group published framework guidance for validating external
catastrophe models on 3 May 2012. A detailed example of an actual validation document, assuming
very high materiality of cat-risk, will be published in July 2012.

During the remainder of 2012, Lloyd's will conduct a series of workshops to assist agents in
embedding systems and processes for external catastrophe model validation. This will include a “one-
on-one” workstream with agents, focusing on documentation and evidence.

“Non-modelled” catastrophe risk

Syndicate exposure to sources of loss not covered (or only partially covered) by external catastrophe
models is an important area to the market, as was demonstrated by the events of 2011. Lloyd’s may
issue guidance on “non-modelled” catastrophe perils in 2012.

Pending the issuance of the guidance by Lloyd’s and the LMA, agents should continue to validate
their internal model’s coverage of sources of loss not captured by the vendor models. The general
principles are the same as those discussed for all risk types in the workshops, model walkthroughs
and in this document. The initial step should be an assessment of risk coverage (section 3.3). The
assessment should reflect the information contained in vendor publications and seminars on sources
of loss not covered by their models. The second step should be an assessment of risk materiality
using risk indicators (for example, PMLs). The selected methodology and assumptions should be
subject to the validation cycle, as described in section 3.5.
4.3 Credit risk

See Appendix 1 for examples of validation tests for credit risk.

4.3.1 Reinsurance

Most commonly, agents have relied on default probabilities published by the rating agencies. Qualitative validation should be based on an understanding of how they were produced and their potential limitations. Other common assumptions include an allowance for credit migration and a dependency between large catastrophes and default probabilities. Sensitivity testing may be an appropriate validation tool.

Reinsurance credit risk will of course be affected by how the reinsurance is modelled. Many agents use (fixed) net-to-gross ratios for reserves. The materiality of modelling recoveries using ratios vs. explicitly should be assessed for years with the potential to generate significant recoveries.

4.3.2 Other

Other sources of credit risk will vary by syndicate. Broker balances may be one. Generally these will be less material than reinsurance credit risk, so validation will be less extensive. Sensitivity and scenario tests may be of use.

4.4 Market risk

For most syndicates, the main drivers of market risk will be foreign exchange risk and interest rate risk. Many agents have chosen to use vendor-produced Economic Scenario Generators to model these risks.

The CEIOPS DOC 48/09 provides advice on the validation of external models. Key elements of the validation include:

- Being able to demonstrate a detailed understanding of the model’s methodology and limitations
- Detailed validation of the external model output

One approach to demonstrating detailed understanding would be documentation of the knowledge gained from vendor publications and presentations and the agent’s own in-house validation. Validation of external model output could include sensitivity testing of key assumptions and comparison of (for example) interest rate movements with their own scenarios.

See Appendix 1 for examples of validation tests for market risk.

4.5 Operational risk

For most agents, the modelling of operational risk will be based on limited data (for example, of “near misses”), supplemented by expert judgement. As with other cases in which expert judgement is relied on, a clear rationale should be provided for the assumptions made. This should be supported by sensitivity tests.

The comments on operational risk in the SCR guidance are relevant to validation.
4.6 Dependencies and aggregation

The validation of dependencies is a broad and challenging subject. The discussion below highlights some of the issues identified in the Dry Run. Many of the points raised here were previously discussed in the model validation workshops.

One useful distinction to make is that between top-down and bottom-up validation. Bottom-up validation begins with the component risks and considers whether the dependencies between them are appropriate. Top-down validation begins with a view on the aggregate distribution and seeks to ensure that the model dependencies produce outputs that are consistent with this view. The table below summarises the main features of each.

<table>
<thead>
<tr>
<th>Dependencies: two approaches to validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALIDATION COMPONENT</td>
</tr>
<tr>
<td>Risk distributions</td>
</tr>
<tr>
<td>Inputs/Outputs</td>
</tr>
<tr>
<td>Sample metrics</td>
</tr>
<tr>
<td>Key validation tools</td>
</tr>
</tbody>
</table>

Both of these approaches have their advantages and limitations. The bottom-up approach explicitly addresses the appropriateness of the individual drivers of dependencies between pairs of risks; the limitation is that it can provide only indirect assurance on the aggregate result. Conversely, the top-down approach can provide comfort that the aggregate result is appropriate, but will be of less use in providing assurance on the appropriateness of the individual drivers of dependency.

A finding from the Dry Run was that agents have relied primarily on bottom-up validation based on sensitivity testing of correlations. Whilst this approach can play an important role in the validation of dependencies, when used on its own it has some significant drawbacks. First, many agents relied on Gaussian copulas, which are not tail dependent; therefore, varying the correlations had little effect at the 99.5th percentile. A more robust sensitivity test would consider alternative dependency structures. Second, there was often only limited support (either qualitative or quantitative) provided for the choice of correlations or dependency structure. Third, there will frequently be drivers of dependency between pairs of risks in addition to the correlations and copula structure; the correlations-based bottom-up approach will not address these other drivers.

Given these limitations, top-down validation can provide a useful addition to the validation toolkit. At the highest level, it begins with the question “What are the aggregations that could (nearly) bankrupt the syndicate?” This question should be an essential part of the reverse stress testing process (see section 3.5.2.5); agents should be able to articulate an answer. At a lower level, agents have made (for example) comparisons between historical YoA loss ratios aggregated across classes of business
with the distribution of aggregated output from the model. Like the bottom-up validation, the top-down approach will not be sufficient on its own.

One of the primary areas of focus for Lloyd’s going forward will be the level of diversification, both within and between the different risk categories (reserving, market, etc.). The discussion of the bootstrap in section 4.2.1 provides an example of how a combination of granular risk distributions and independence can result in an overall distribution that lacks skewness. Similarly, the use of granular risk distributions elsewhere in the model, combined with non-tail dependent Gaussian copulas, will result in a lower 99.5th percentile, both at the risk category level, and for the overall SCR. Some internal models contain hundreds of pairs of correlations but still produce diversification benefits of 30% or more. Agents should address the level of the diversification benefit as part of their validation of dependencies.

Finally, agents should also consider whether all of the dependencies in their model are warranted. CEIOPS DOC 48/09 (5.245) states that dependencies should be supportable by expert judgement on causal relations or quantitative evidence (or both). If such justification cannot be found, this should be stated as a finding of the validation process. An example could be dependencies between attritional and large claim premium risk distributions. Agents often stated that they chose their attritional/large threshold so that their attritional loss ratios were stable over time. If this is the case, adding dependencies between attritional and large may not make any material contribution to the final result (regardless of the dependency structure). Agents should avoid adding dependencies unless there is a quantitative or qualitative case for doing so.

See Appendix 1 for examples of validation tests for dependencies.

4.7 One year risk and one year SCR

Syndicates are required to provide the one year 99.5th VaR for the individual risk categories and a one year SCR for the syndicate as a whole. The validation of one year risk presents a number of unique challenges.

Broadly speaking, there are two approaches to calculating one year risk:

(1) a direct approach, and
(2) an indirect approach that derives one year risk from ultimate risk.

Currently, the most common approach is to use some form of indirect approach (often called “recognition patterns”). Whichever approach is chosen, however, the validation task is to demonstrate that the level of risk over a one year horizon is appropriate. The validation tools will be largely the same.

Benchmarking against ultimate risk is a fundamental validation test. Lloyd’s requires that insurance risk be modelled to ultimate; for these risks (reserve, premium and cat), one year risk should not exceed ultimate. Lloyd’s takes this position based on the following principles.

- Reserving risk emerges over an extended period, and this leads to the volatility on a book of earned reserves to be lower over the next year compared to ultimate. Historical experience also indicates that “bad years get worse” (i.e. there is no real evidence of reversionary effects on reserves).
• The exposure to premium (or underwriting) risk is typically 18 months on an ultimate basis; “problems” (especially attritional issues) can take an extended time to emerge. These two effects will make premium risk more volatile on an ultimate basis.

• As with premium risk, cat risk will, on average, be covering 18 months exposure on an ultimate basis. This will result in more volatile results at a 1-in-200 on an ultimate vs. one year horizon.

See the 9 & 10 May 2011 Model Validation Workshop section on Calibration for a discussion of one year vs. ultimate risk.

With regards to reserve risk, a test against experience for one year risk should involve a comparison of historical one year movements in ultimate as a percentage of opening reserves. Two difficulties that may arise in applying such a test are:

1. a lack of credible historical data; and
2. past ultimates may not have been set on a true best estimate basis, as Solvency II requires.

Despite these difficulties, Lloyd’s considers the historical experience to be an essential point of reference. Where margins/deficits have existed, agents should attempt to explain the reasons and the impact on one year emergence. It should not be necessary to carry out detailed tests against experience for all classes; these could be done for a few of the more material classes, and smaller classes could be benchmarked against these, taking into account considerations such as whether the class is longer or shorter tailed.

A number of methods exist for calculating one year reserve risk emergence, sometimes referred to as the variability in the claims development result (“CDR”). These approaches range in complexity from the QIS 5 proportional method to multi-period simulation approaches that include recalculation of the risk margin. A recent paper [4] on risk margins found that an approach based on factoring ultimate risk into annual time periods was nearly as accurate and much easier to implement than the “full blown” multi-period approach. This result was specific to the data and model used, and may not be valid in general. Agents should provide qualitative validation on the assumptions and limitations of any method used to determine or validate one year reserve risk.

Validation of the syndicate one year SCR should include similar validation checks to those used for the ultimate SCR. These include stress and scenario testing and reverse stress testing. Historical profit & loss at the syndicate level, relative to some exposure measure, may provide an indication of whether the SCR will be breached. It is generally expected that the one year SCR will be less than the ultimate, since the 99.5th VaRs for the dominant risk categories are expected to be lower at one year than at ultimate. There are other considerations however that could result in the one year SCR being (somewhat) higher. On an ultimate basis, both the SCR and the risk margin are available to protect against insolvency; in effect, the risk margin is an offset to the ultimate SCR. Conversely, on a one year horizon, the risk margin must be available to transfer the liabilities at year end. If one year risk is large relative to ultimate (as for say a syndicate writing mainly property), and depending on how the risk margin has been determined, the one year SCR could exceed ultimate. Another possible reason is that risks may aggregate differently at one year vs. ultimate. Lloyd’s will expect explicit justification when the one year SCR exceeds the ultimate.
4.8 **Ultimate SCR**

The validation of the ultimate SCR is based on the validation of the underlying components. Agents should also carry out validation tests at the syndicate level, including reverse stress testing, P&L attribution and an analysis of change against the previous SCR. These tests were discussed in section 3.5.2.
APPENDICES
APPENDIX 1: ILLUSTRATIVE VALIDATION TESTS FOR SPECIFIC RISK TYPES

Reserving risk

<table>
<thead>
<tr>
<th>TEST TYPE</th>
<th>DESCRIPTION & CRITERIA</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative (data)</td>
<td>Assessment of appropriateness of claims history for predicting future emergence; criteria can relate to changes types of risks, size of data set, policy terms, claims reserving practices, etc.</td>
<td>Identification of potential biases to the reserve risk estimate due to limitations of claims history</td>
</tr>
<tr>
<td>Qualitative (methodology & assumptions)</td>
<td>Identification of desirable criteria of a reserving risk model, including types of risk covered (parameter, inflation, etc.), allowance for dependence between accident years; differentiation between types of emergence (IBNR, IBNER); accuracy of RI recovery modelling; user-friendliness and ease of explanation; etc.</td>
<td>Qualitative assessment of strengths and weaknesses of approach; Demonstration of understanding of methodology</td>
</tr>
<tr>
<td>Sensitivity test (risk groupings)</td>
<td>Sensitivity of reserve risk estimate to alternative data splits (all claims vs. large and attritional; different class groupings, etc.)</td>
<td>Identification of risk groupings as a potential source of reserve risk estimation error</td>
</tr>
<tr>
<td>Goodness-of-fit (bootstrap residuals)</td>
<td>Analysis of residual plots by AY, DY and CY for non-normality; criteria defining outliers and trends (e.g. number of standard deviations for outliers; number of sequential residuals moving up/down for trend)</td>
<td>Assessment of appropriateness of bootstrap assumptions for data set</td>
</tr>
<tr>
<td>Backtest (reserve movements)</td>
<td>Historical accident/underwriting year reserve movements (adjusted for paid) as a percentage of opening reserve over 1, 2, etc. years vs. modelled distribution percentiles</td>
<td>Test the consistency of model distribution with historical experience; Provides link between history and model for senior management</td>
</tr>
<tr>
<td>Qualitative (AY dependencies)</td>
<td>Assess historical likelihood of more than one accident year having a large actual vs. expected in a given calendar year</td>
<td>Qualitative evaluation of accident year dependencies</td>
</tr>
<tr>
<td>Stress & scenario test (large claims)</td>
<td>Stress test case reserves on largest claims & assess impact on reserves; compare to reserve risk distribution percentiles</td>
<td>Assess appropriateness of reserve risk distribution based on information on known claims</td>
</tr>
</tbody>
</table>
Premium risk excluding catastrophe

<table>
<thead>
<tr>
<th>TEST TYPE</th>
<th>DESCRIPTION & CRITERIA</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative (data)</td>
<td>Assessment of credibility of experience for modelling premium risk; criteria based on considerations such as volume, differences between past policy T&C and risk types vs. next year of account</td>
<td>Identification of potential biases to the premium risk estimate due to limitations of claims history</td>
</tr>
<tr>
<td>Qualitative (methodology & assumptions)</td>
<td>Identification of desirable criteria of a premium risk model, including types of risk covered (parameter, inflation, underwriting cycle, etc.); differentiation between types of claims emergence (attritional, large claims, clash, non-modelled perils); accuracy of RI recovery modelling; user-friendliness and ease of explanation; etc.</td>
<td>Qualitative assessment of strengths and weaknesses of approach; Demonstration of understanding of methodology</td>
</tr>
<tr>
<td>Sensitivity (data adjustments)</td>
<td>Graphical evaluation of re-valued/on-level historical large claim frequencies, large claim severities and ULRs; criteria should relate to absence of trends; result should be random variation about long-term average</td>
<td>Indirect test that adjustments for rate changes, inflation, IBNER, etc. are reasonable</td>
</tr>
<tr>
<td>Goodness-of-fit tests (large claims)</td>
<td>Standard statistical tests such as Q-Q plots; criteria should involve consideration of tail</td>
<td>Test consistency between parametric distributions and claims history</td>
</tr>
<tr>
<td>Benchmarking (CoB comparisons)</td>
<td>Comparison of relative riskiness of different CoB as indicated by quantitative methodology; criteria based on underwriting knowledge</td>
<td>Test consistency between premium risk models for different classes</td>
</tr>
<tr>
<td>Scenarios (large claim)</td>
<td>Scenarios based on extreme large claims; criteria could involve comparison against policy limits</td>
<td>Assess appropriateness of premium risk distribution against actual exposure</td>
</tr>
</tbody>
</table>
Credit risk

<table>
<thead>
<tr>
<th>TEST TYPE</th>
<th>DESCRIPTION & CRITERIA</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative (methodology & assumptions)</td>
<td>Assessment of methodology used to assess probabilities of default, recovery rates, transition probabilities, dependencies between creditors, allowance for credit enhancements (funds withheld, letters of credit, etc.) and a stressed environment; criteria could relate to considerations such as size of data set relied on, whether it reflects recent trends, any testing against experience or other validation carried out (if obtained from an external provider)</td>
<td>Qualitative assessment of strengths and weaknesses of approach; Demonstration of understanding of methodology</td>
</tr>
<tr>
<td>Stress test (r/i recoveries)</td>
<td>“As-if” scenario based on stressed environment following large cat; calculate r/i recoveries after default of one or more r/i after allowance for any mitigation (funds withheld, etc.); criteria could be based on difference with model output for similar scenario</td>
<td>Assess appropriateness of default severities</td>
</tr>
</tbody>
</table>
Market risk

<table>
<thead>
<tr>
<th>TEST TYPE</th>
<th>DESCRIPTION & CRITERIA</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative (ESG methodology & assumptions)</td>
<td>Descriptions of the methodology and assumptions used, with emphasis on those parts most material to the syndicate (interest rate risk and foreign exchange risk) and any proprietary assumptions relating to dependencies; criteria could be based in part on any validation done by the vendor, and comparisons with other ESGs</td>
<td>Qualitative assessment of strengths and weaknesses of the ESG;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstration of understanding of methodology</td>
</tr>
<tr>
<td>Backtest (market data)</td>
<td>Model outputs are compared to historical market data, such as UK gilt or US Treasury rates; criteria could relate to differences between historical and model volatilities or extreme movements</td>
<td>High-level check on credibility of ESG output</td>
</tr>
<tr>
<td>Stress test (past crises)</td>
<td>Stress tests based on past crises e.g. 2008; criteria could be based on probabilities of similar movements in model output</td>
<td>Tests coverage of extreme market events in internal model</td>
</tr>
<tr>
<td>Sensitivity test (shift in key variables)</td>
<td>Sensitivity test value of asset portfolio for different movements in interest rates or exchange rates; criteria could be based on probabilities of similar movements in model output</td>
<td>Determine materiality of exposure to key financial variables;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aids communication with management</td>
</tr>
<tr>
<td>Stress test (future crises)</td>
<td>Stress tests based on understanding of current threats to the financial markets, e.g. insolvency of European banks or governments; criteria could be based on probabilities of similar events in model output</td>
<td>Tests coverage of extreme market events in internal model</td>
</tr>
<tr>
<td>TEST TYPE</td>
<td>DESCRIPTION & CRITERIA</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Qualitative (driver identification)</td>
<td>Qualitative assessment of drivers of dependency (inflation, cats, shared UW cycle, common policyholders)</td>
<td>Assess appropriateness and comprehensiveness of approach to dependencies in model; Demonstrate understanding of sources of dependency</td>
</tr>
<tr>
<td>Benchmarking (aggregated vs. total)</td>
<td>Compare risk distribution obtained by aggregating marginal distributions with that obtained from the aggregate data (e.g. CoB bootstrap reserve risk distributions aggregated and compared to bootstrap on aggregated CoB data)</td>
<td>Top-down test on dependencies</td>
</tr>
<tr>
<td>Backtest (aggregated history vs. model)</td>
<td>Aggregate historical experience across risk categories (such as CoB loss ratios) and compare to aggregated output from model</td>
<td>Top-down test on dependencies</td>
</tr>
<tr>
<td>Backtest (joint exceedance probability)</td>
<td>Historical probabilities of pairs of distributions both exceeding a given percentile (e.g. two CoB premium risk distributions both exceeding their 75th percentile)</td>
<td>Provides indication of tail dependencies</td>
</tr>
<tr>
<td>Reverse stress test</td>
<td>Identify aggregations of events that could (nearly) bankrupt the syndicate; compare to SCR distribution</td>
<td>Top-down test on dependencies and SCR</td>
</tr>
</tbody>
</table>

APPENDIX 2: REFERENCES

